This paper describes the architecture and functionality of a work zone traffic information system that uses vehicle-to-vehicle communication, based on dedicated short-range communications (DSRC), and a newly designed hopping algorithm. (“Hopping” involves transmitting traffic messages via intermediate hosts to a target designation. The term is commonly used in the radio and wireless communication industry.) The proposed hopping algorithm can deliver in-vehicle messages transmitted by a roadside unit installed at a work zone site to faraway vehicles traveling toward the work zone on predefined routes. This newly designed hopping algorithm uses rectangular regions to define a hopping route and can hop messages to vehicles on multiple routes at the same time without the risk of creating a broadcast storm. Although the messages hopped by the proposed hopping algorithm will generally be applicable to vehicles on only one side of the road (traveling toward the work zone), the DSRC-equipped vehicles present on both sides of the road will participate in hopping to maximize the number of available hopping nodes in situations with lighter traffic flow or low DSRC market penetration. Furthermore, the hopping algorithm increases message security by not requiring the hopping nodes (i.e., the DSRC-equipped vehicles) to modify the contents of the hopped message. Numerical simulations have been performed to evaluate the performance of the hopping algorithm. The simulation results show that the proposed hopping algorithm works as expected and successfully disseminates DSRC messages along a predefined route.