2020
DOI: 10.1016/j.infrared.2020.103326
|View full text |Cite
|
Sign up to set email alerts
|

HybridCNN based hyperspectral image classification using multiscale spatiospectral features

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
20
0
5

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 69 publications
(25 citation statements)
references
References 20 publications
0
20
0
5
Order By: Relevance
“…Recently, deep neural networks have become popular, following their successful application for classic image classification [ 33 , 34 ] and object detection [ 35 ]. Examples of architectures employed for HSI classification include one [ 10 ], two [ 36 ] or three-dimensional [ 22 ] convolutional models for more efficient use of spatial and spectral information [ 37 ].…”
Section: Introductionmentioning
confidence: 99%
“…Recently, deep neural networks have become popular, following their successful application for classic image classification [ 33 , 34 ] and object detection [ 35 ]. Examples of architectures employed for HSI classification include one [ 10 ], two [ 36 ] or three-dimensional [ 22 ] convolutional models for more efficient use of spatial and spectral information [ 37 ].…”
Section: Introductionmentioning
confidence: 99%
“…Bu evrişim işlemi, giriş görüntüsünden uzamsal özellikleri çıkarmaya yardımcı olmaktadır. Her nöronun 2B evrişim çıktısı Denklem (1)'deki gibi formüle edilmektedir (Mohan and Venkatesan, 2020).…”
Section: öNerilen Yöntemunclassified
“…3B evrişim, 3B spektral görüntülerden uzamsal-spektral özelliklerin çıkarılmasına yardımcı olmaktadır. 3B ESA yönteminden çıkarılan özellik Denklem (2)'deki gibi formüle edilmektedir (Mohan and Venkatesan, 2020).…”
Section: öNerilen Yöntemunclassified
See 1 more Smart Citation
“…Recently, a CNN model has been used successfully in hyperspectral image analysis. Mohan and Venkatesan 24 developed a hybrid CNN model for hyperspectral image classification and this achieved good results on the ‘Indian pine’, ‘Pavia university’ and ‘Salinas’ datasets. In a study with crops, Yang et al 25 .…”
Section: Introductionmentioning
confidence: 99%