Near-infrared (NIR) absorption spectrum measurements over a frequency range from 4000 to 12000 cm(-1) were employed to investigate the effects of the presence of solute compounds to vibrational modes of water molecules in aqueous solutions of some aprotic hydroneutral polar compounds with large dipole moments, such as nitro compounds and nitriles. The obtained NIR spectra for the aqueous solutions were decomposed into three components: free water, solute, and water molecules affected by the presence of solutes. Newly determined NIR spectra of affected water molecules were well-described with at least four absorption modes observed at 7040, 6850, 6450, and 5640 cm(-1) for both the nitro compounds and nitriles. The highest frequency mode at 7040 cm(-1) possessing the strongest intensity was assigned to the first stretching overtone of affected water hydroxy (O-H) groups, which are nonhydrogen bonded to other water molecules and dangling. The second highest frequency mode at 6850 cm(-1) was assigned to the first stretching overtone of affected water O-H groups hydrated to other (free) water molecules. The third mode at 6400 cm(-1) was attributed to a combination mode of the fundamental stretching of O-H and the first overtone of the O-H bending mode of the affected water molecules. The lowest frequency mode at 5640 cm(-1) was assigned to the combination mode of the fundamental O-H stretching mode, the fundamental O-H bending mode, and the hindered rotational (libration) mode of the affected water molecules. Because absorption intensities of the third and lowest frequency modes for water molecules affected by the solutes depended on the sizes of alkyl groups of polar solutes, these two modes possibly result from the contribution of hydrophobic hydration effects.