Direct observation of J-couplings remains a challenge in high-resolution solid-state NMR. In some cases, it is possible to use Lee-Goldburg (LG) homonuclear decoupling during rare spin observation in MAS NMR correlation spectroscopy of lipid membranes to obtain J-resolved spectra in the direct dimension. In one simple implementation, a wide line separation-type (13)C-(1)H HETCOR can provide high-resolution (1)H/(13)C spectra, which are J-resolved in both dimensions. Coupling constants, (1)J(HC), obtained from (1)H doublets, can be compared with scaled (1)J(θ)(CH)-values obtained from the (13)C multiplets to assess the LG efficiency and scaling factor. The use of homonuclear decoupling during proton evolution, LG-HETCOR-LG, can provide J-values, at least in the rare spin dimension, and allows measurements in less mobile membrane environments. The LG-decoupled spectroscopic approach is demonstrated on pure dioleoylphosphatidylcholine (DOPC) membranes and used to investigate lipid mixtures of DOPC/cholesterol and DOPC/cholesterol/sphingomyelin.