Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Hydraulic fracturing has been a key technology enabler for the development of tight gas formations in Oman. This tight gas accumulation has been developed with the supported of vertical wells, fractured at different depth covering up to 10 different hydrocarbons units. The intrinsic geomechanical, petrophysical and lithological heterogeneities of this tight units impact not only the fracture conductivity distribution but the drainage efficiency of the fractured zones, this is observed as mobility variations across this unit impact their contributions once all become commingle, with the areas of higher mobility dominating the total gas well production. It was anticipated that depletion of the higher mobility units will impact and change the contribution dynamics of the commingle production. However, this is only one dimension of the challenges to be considered as part of the hydraulic fracture strategy during the field development. This paper will be focus key operational challenges and the fundamental formation characterization requirements to assess in-situ stress dynamic variations during the life of the field; incorporating formation pressure points as integral part of the drilling program and in-situ stress measurements supported by wellbore stability evaluation and mini-fracture operations. It will be presented how variations on pressure and stress profiles, as the field developed, will impact the perforation and fracture strategies as well as pressure operating envelop to assure well integrity. It will be described the logging requirements as well as the lab characterization needed to determine key elastic properties to assess the hydraulic requirements for fracturing individual units or combination of them. It will be discussed how increase of pressure confinement potentially affects the in-situ elastic properties as depletion is experienced on specific gas units, inducing alterations on stress profiles that impact fracture propagation and final conductivity distribution. The use of radioactive tracers in combination with production logging were implemented to assess containment and fracture prediction, providing this an essential tool to determine fracture propagation behavior, deployment strategy and final conductivity distribution. Key operations covering plug milling, post fracture clean out and well lifting will be also discussed. Finally, it will presented key observation that can be implemented as part of methodologies used for fracture deployment on differential depletion formation, this leading to optimum field development while maximize investment.
Hydraulic fracturing has been a key technology enabler for the development of tight gas formations in Oman. This tight gas accumulation has been developed with the supported of vertical wells, fractured at different depth covering up to 10 different hydrocarbons units. The intrinsic geomechanical, petrophysical and lithological heterogeneities of this tight units impact not only the fracture conductivity distribution but the drainage efficiency of the fractured zones, this is observed as mobility variations across this unit impact their contributions once all become commingle, with the areas of higher mobility dominating the total gas well production. It was anticipated that depletion of the higher mobility units will impact and change the contribution dynamics of the commingle production. However, this is only one dimension of the challenges to be considered as part of the hydraulic fracture strategy during the field development. This paper will be focus key operational challenges and the fundamental formation characterization requirements to assess in-situ stress dynamic variations during the life of the field; incorporating formation pressure points as integral part of the drilling program and in-situ stress measurements supported by wellbore stability evaluation and mini-fracture operations. It will be presented how variations on pressure and stress profiles, as the field developed, will impact the perforation and fracture strategies as well as pressure operating envelop to assure well integrity. It will be described the logging requirements as well as the lab characterization needed to determine key elastic properties to assess the hydraulic requirements for fracturing individual units or combination of them. It will be discussed how increase of pressure confinement potentially affects the in-situ elastic properties as depletion is experienced on specific gas units, inducing alterations on stress profiles that impact fracture propagation and final conductivity distribution. The use of radioactive tracers in combination with production logging were implemented to assess containment and fracture prediction, providing this an essential tool to determine fracture propagation behavior, deployment strategy and final conductivity distribution. Key operations covering plug milling, post fracture clean out and well lifting will be also discussed. Finally, it will presented key observation that can be implemented as part of methodologies used for fracture deployment on differential depletion formation, this leading to optimum field development while maximize investment.
The scope of this paper is to discuss and compare the different milling strategies of the frac plugs associated to hydraulic fracturing operations in both, vertical and horizontal gas wells, with formations depleted in Petroleum Development Oman (PDO); the main objective is to describe milling operations and the well delivery improvement by the optimization of clean out and milling strategy. The paper will show the enhancement of the milling operations and the outstanding results. The paper will start by describing the execution of hydraulic fracturing operations in both vertical and horizontal wells, which is mainly related to plug and perf. It will also cover clean out and milling practices for frac plugs in depleted formations. Further, it will discuss the planning and design of the post frac clean outs and milling jobs based on the learnings previously captured. Frac plugs milling operations have been successfully improved in severe depleted vertical gas wells and some horizontal wells with no severe depletion; initially the milling operation was done after all frac stages were completed in depleted wells, out of the critical path, however the experience showed that it was a lengthy and expensive process due to the severe formation losses while milling leading into a very low efficient operation impacting the frac well delivery. The subsequent step was to address the milling after every stage, during the critical path, which increases the cost of daily frac charges. With the use of an innovate downhole technology the milling strategy was changed and optimized showing outstanding results, milling frac plugs was achieved successfully at the end of the job in horizontal wells while in some previous wells the milling was done in between the stages; also for vertical depleted gas wells, fracturing stages have been combined to mill frac plugs together. The completion of the entire wells (well delivery) was achieved in a relative shorter period of time compared to previous wells; this is reflected on actual cost reduction of more than 20% of total cost/AFE The optimization of the frac plug milling operations is a novel approach to enhance hydraulic fracturing and well delivery in depleted gas wells in PDO, this is in alignment with the continuous improvement (CI) ideas and the lean thinking across the oil and gas industry nowadays. It is easy to replicate in other gas fields expected to be depleted, which will reduce cost, Health, Safety & Environment (HSE) exposure and will help increase the recovery of hydrocarbon reserves.
The Saih Rawl gas condensate field has been producing for 20 years from multiple fractured vertical wells covering a very thick gross interval with varying reservoir permeability. After many years of production, the remaining reserves are mainly in the lowest permeability upper units. A pilot program using horizontal multi-frac wells was started in 2015, and five wells were drilled, stimulated and tested over a four-year period. The number of stages per horizontal well ranged from 6 to 14, but in all cases production was much less than expected based on the number of stages and the production from offset vertical wells producing from the same reservoir units with a single fracture. The scope of this paper is to describe the work that was performed to understand the reason for the lower than expected performance of the horizontal wells, how to improve the performance, and the implementation of those ideas in two additional horizontal wells completed in 2020. The study workflow was to perform an integrated analysis of fracturing, production and well test data, in order to history match all available data with a consistent reservoir description (permeability and fracture properties). Fracturing data included diagnostic injections (breakdown, step-rate test and minifrac) and main fracture treatments, where net pressure matching was performed. After closure analysis (ACA) was not possible in most cases due to low reservoir pressure and absence of downhole gauges. Post-fracture well test and production matching was performed using 3D reservoir simulation models including local grid refinement to capture fracture dimensions and conductivity. Based on simulation results, the effective propped fracture half-length seen in the post-frac production was extremely small, on the order of tens of meters, in some of the wells. In other wells, the effective fracture half-length was consistent with the created propped half-length, but the fracture conductivity was extremely small (finite conductivity fracture). The problems with the propped fractures appear to be related to a combination of poor proppant pack cleanup, low proppant concentration and small proppant diameter, compounded by low reservoir pressure which has a negative impact on proppant regained permeability after fracturing with crosslinked gel. Key conclusions from this study are that 1) using the same fracture design in a horizontal well with transverse fractures will not give the same result as in a vertical well in the same reservoir, 2) the effect of depletion on proppant pack cleanup in high temperature tight gas reservoirs appears to be very strong, requiring an adjustment in fracture design and proppant selection to achieve reasonable fracture conductivity, and 3) achieving sufficient effective propped length and height is key to economic production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.