River barrages ensure water availability for enhanced irrigation and human consumption. Of course, effective and sustainable management of existing barrages requires controlling riverbed erosion through appropriately designed stilling basins with their appurtenances. The present study assesses the stilling basin performance of the Taunsa Barrage, a vital water resources infrastructure built in 1958 in Punjab, Pakistan, and rehabilitated between 2004 and 2008 through the construction of a subsidiary weir (SW) downstream of the main weir. A physical modeling approach was employed, consisting of two distinct phases of laboratory experiments. Phase 1 replicated the Taunsa Barrage before rehabilitation, assessing the need for SW construction under different discharge rates and downstream bed elevations. Phase 2 reproduced the post-rehabilitation conditions, including varying discharge values, heights and positions of the SW, to evaluate the stilling basin design concerning the ability to dissipate flow energy. The results demonstrated (i) inadequate tailwater levels and oscillating hydraulic jump formation under increased discharges in pre-rehabilitation conditions (highlighting the poor performance of the original Taunsa Barrage stilling basin and the need for an SW to address these hydraulic deficiencies), and (ii) that the SW, under the design conditions, achieved optimal head loss for discharge values near the design discharge. However, the head loss efficiency was highly sensitive to variations in the distance and height of the SW due to hydraulic jump pulsations. Moreover, the head loss efficiency rapidly degraded for discharges greater than the design discharge. These findings indicate that the Taunsa barrage stilling basin may lack the capacity to accommodate higher discharges resulting from the interplay between climate change and land use alterations within the upstream Indus River basin. Future research should focus on developing a design that enhances energy dissipation robustness, reducing susceptibility to potential discharge increases.