[1] This study has simulated the terrestrial hydrology associated with different climate, landscape, and permafrost regime scenarios for the field case example of the relatively well characterized coastal catchment of Forsmark, Sweden. The regime scenarios were selected from long-term simulation results of climate, topographical, shoreline, and associated Quaternary deposit and vegetation development in this catchment with a time perspective of 100,000 years or more and were used as drivers for hydrological simulations with the three-dimensional model MIKE SHE. The hydrological simulations quantify the responses of different water flow and water storage components of terrestrial hydrology to shifts from the present cool temperate climate landscape regime in Forsmark to a possible future Arctic periglacial landscape regime with or without permafrost. The results show complexity and nonlinearity in the runoff responses to precipitation changes due to parallel changes in evapotranspiration, along with changes in surface and subsurface water storage dynamics and flow pathways through the landscape. The results further illuminate different possible perspectives of what constitutes wetter/drier landscape conditions, in contrast to the clearer concept of what constitutes a warmer/colder climate.