Porous membrane separation is a competitive hydrogen purification technology due to the advantages of environmental friendliness, energy-saving, simple operation, and low cost. Benefiting from the booming development of materials science and chemical science, great progress has been made in H 2 separation with porous membranes. This review focuses on the latest advances in the design and fabrication of H 2 separation inorganic microporous membranes, with emphasis on the synthetic strategies to achieve structural integrity, continuity and stability. This review starts with a brief introduction to the membrane separation mechanisms, followed by an elaboration on the synthetic challenges and corresponding solutions of various high-performance inorganic microporous membranes based on zeolites, silica, carbon, and metal-organic frameworks (MOFs). At last, by highlighting the prospects of ultrathin two-dimensional (2D) porous membranes, we wish to shed some light on the further development of new materials and membranes for highly efficient hydrogen separation.