Recent studies suggest that parasites affect host development, reproduction, and behavior through alterations of host hormones and pheromones, or other hormone-triggered biochemical events. We previously reported that Hymenolepis diminuta infection affects surface-seeking and cannibalism behaviors, and reduces male sperm precedence of Tribolium castaneum beetles. This study examined the quantitative effects of H. diminuta on the production of aggregation pheromone and 3 defensive compounds in male T. castaneum beetles, using 2 wild-caught, geographically distinct T. castaneum strains. For the c-Madison strain, infected beetles exhibited a 2- to 22-fold increase in defensive compounds; conversely, no changes were observed in strain c-Africa. Parasite infection did not significantly influence aggregation pheromone secretion in either strain. Because defensive compounds function as repellents or deterrents to other insects, parasite-induced increases in the secretion of defensive compounds may be a physiologic clue for the behavioral changes in infected T. castaneum beetles. Significant among-strain variation in defensive compound production seen in infected beetles suggests that caution is needed before generalizing about changes in volatile production and in host behavior induced by a parasite.