The alluvial-diluvial plain of southwest Shandong Province is an important agricultural economic zone and energy base in Shandong Province. Groundwater plays an extremely significant role in the development of the regional social economy. In this study, 50 sets of water samples, collected from 25 wells during October 2016 and June 2017, were utilized to determine the hydrogeochemistry and the suitability of groundwater in the alluvial-diluvial plain of southwest Shandong Province for different applications, such as drinking and irrigation. Most of the water samples could be classified as hard-fresh water or hard-brackish water, and the dominant water types were HCO 3 -Na and mixed types. Water-rock interactions and evaporation were the dominant controlling factors in the formation of the hydrochemical components in the groundwater. Dissolutions of silicate, calcite, dolomite, and gypsum are the major reactions contributing and defining the groundwater chemistry in this plain. Moreover, cation exchange is a non-negligible hydrogeochemical process in this plain. Calculated saturation index (SI) values indicate that aragonite, calcite and dolomite are saturated, while the SI values for gypsum and halite are unsaturated. Based on fuzzy comprehensive evaluation, the groundwater quality ranges from excellent to very poor. More than 50% of all groundwater samples from 2016 are categorized as poor or very poor, suggesting that the water from these wells is not suitable for drinking. According to the sodium adsorption ratio and percentage sodium, most of the samples are suitable for agricultural irrigation. Overall, the quality of the groundwater in 2017 was found to be better than in 2016. Therefore, in order to ensure access to clean water for the growing population, one needs to protect and utilize water resources carefully and sensibly. To achieve this goal, it is necessary to understand the origins and hydrochemistry of water. These two, seemingly simple aspects are at the center of many worldwide principal, social, and environmental programs [7,8].Evaluation of the hydrogeochemical characteristics and the suitability of groundwater for different uses has been extensively researched around the world [7][8][9][10][11][12]. These studies indicate that the hydrochemical composition and water quality of groundwater are influenced by natural factors (such as water-rock interactions, climate change, geological conditions, etc.) and anthropogenic activities such as industrial, agricultural, and domestic sewage discharge [7][8][9][10][11][12]. However, anthropogenic sources have become a dominant factor affecting the groundwater environment [13,14]. In previous studies, hydrochemical methods, such as Gibbs diagrams, Piper trilinear graphs, saturation index (SI), and ion ratio graphs, have commonly been used to determine which hydrogeochemical processes are occurring and the controlling factors in these processes [15][16][17][18]. Fuzzy comprehensive evaluation (FCE), sodium adsorption ratio (SAR), and percentage sodium (% Na...