The role of microorganisms in microbialite formation remains unresolved: do they induce mineral precipitation (microbes first) or do they colonize and/or entrap abiotic mineral precipitates (minerals first)? Does this role vary from one species to another? And what is the impact of mineral precipitation on microbial ecology? To explore potential biogenic carbonate precipitation, we studied cyanobacteria–carbonate assemblages in modern hydromagnesite-dominated microbialites from the alkaline Lake Alchichica (Mexico), by coupling three-dimensional imaging of molecular fluorescence emitted by microorganisms, using confocal laser scanning microscopy, and Raman scattering/spectrometry from the associated minerals at a microscale level. Both hydromagnesite and aragonite precipitate within a complex biofilm composed of photosynthetic and other microorganisms. Morphology and pigment-content analysis of dominant photosynthetic microorganisms revealed up to six different cyanobacterial morphotypes belonging to Oscillatoriales, Chroococcales, Nostocales and Pleurocapsales, as well as several diatoms and other eukaryotic microalgae. Interestingly, one of these morphotypes, Pleurocapsa-like, appeared specifically associated with aragonite minerals, the oldest parts of actively growing Pleurocapsa-like colonies being always aragonite-encrusted. We hypothesize that actively growing cells of Pleurocapsales modify local environmental conditions favoring aragonite precipitation at the expense of hydromagnesite, which precipitates at seemingly random locations within the biofilm. Therefore, at least part of the mineral precipitation in Alchichica microbialites is most likely biogenic and the type of biominerals formed depends on the nature of the phylogenetic lineage involved. This observation may provide clues to identify lineage-specific biosignatures in fossil stromatolites from modern to Precambrian times.