Bubble column reactor as a gas-liquid contactor is extensively used in the chemical and biochemical industries. Mass transfer coefficients governing the transport processes in bubble contactors are a growing concern in chemical and biotechnological processes whose rates are often limited by the mass transfer rate. The influences of different physical, dynamic and geometric variables affect the efficiency characterization of the equipment which are involved in gas/liquid mass transfer processes. This characterization has great importance to optimize the process plant design. In this article, efficiency of two-phase mass transfer in bubble column reactors has been analyzed based on dynamic, geometric and physical variables of the system. An empirical correlation for mass transfer efficiency has also been developed in terms of those variables. The present analysis on the gas-liquid mass transfer efficiency of bubble column may give insight into a further understanding and modeling of multiphase reactors in industrial applications.