Weeping is an important hydraulic parameter that needs to be considered for valve trays and for calculations in the distillation field. Therefore, the accurate prediction of weep rate is crucial for the optimal design of valve trays. First, the effects of gas and liquid loads and weir height on weep rate, tray pressure drop, and actual bubbling area were studied in a 1.5 m × 0.61 m cold simulator. Second, the weep modes on the valve tray were analyzed in detail. A theoretical model was then derived to calculate weeping. The model showed a clear relationship between the weep rate and the fractional bubbling area. The experimental data showed that the weir height substantially affected the orifice coefficient of the liquid passing through the valve. Finally, the relation between weir height and orifice coefficient was obtained by fitting the experimental data. The agreements were good, and the maximum deviations were approximately 25%.