The current demand of liquefied natural gas (LNG) from remote marine locations pushes the design of floating LNG (FLNG) liquefaction or regasification facilities, where LNG is transferred between shuttle carrier (LNGC) and terminal. Even if the tandem configuration is the primary choice for LNG transfer at rough offshore locations, side-by-side configurations would be the preferred option because of existing midship coupling manifolds on the present carrier fleet (no need for manifold modifications) as well as standard mooring systems and transfer-process-chains similar to oil-transfer. Therefore, the operation conditions at rough seas have to be improved to allow side-by-side LNG-transfer and to reduce offloading downtime.
Within the SOTLL-project, side-by-side LNG transfer up to HS = 3 m is reached as a transfer limit using a new flexible pipe design, the advantages of sheltered areas at the leeside of the terminal barge and an optimized ship transfer position due to a flexible longitudinal offloading position. In addition to the evaluation of the hydrodynamic characteristics of this multibody system, one key aspect is the analysis of the exciting forces and motions due to wave amplification between the ships. In the gap between the hulls, the incoming wave field is amplified and changes dramatically. Depending on gap width, longitudinal offset, wave heading and length, large wave amplifications, standing waves and other resonance phenomena are observed which may result in high relative motions and increased forces of the entire mooring system. In this paper, the gap effects are investigated in detail with numerical approaches in frequency domain, validated by model tests at TU Berlin. A typical offloading scenario with barge and carrier is investigated for different gap sizes to identify suitable transfer configurations and ensure safe LNG offshore transfer up to HS = 3 m.