With the increase in global extreme climate events, the frequency of urban waterlogging caused by extreme rainstorms is increasing, resulting in serious economic losses and risk to local residents. Understanding the influence of impervious surfaces on urban waterlogging is of great significance for reducing urban waterlogging disasters. Based on InfoWorks ICM, the urban waterlogging model of Lin’an City was established, and the multi-scenario design method was used to analyze the characteristics and causes of urban waterlogging under different designed rainfall return periods. The results show that the maximum stagnant water depth and area are positively correlated with the proportion of impervious surfaces and rainfall return periods. In addition, urban waterlogging is related to the fragmentation of impervious surfaces, pipeline network, and so on. Based on the findings, it is suggested that impervious surfaces should be placed upstream and along roads where feasible. It is also recommended that the aggregation of impervious surfaces is minimized to prevent urban waterlogging. The results provide technical support and reference for local governments to prevent waterlogging disasters.