Batoids are a diverse clade of flat cartilaginous fishes that occur primarily in benthic marine habitats. The skates and rays typically use their flexible pectoral fins for feeding and propulsion via undulatory swimming. However, two groups of rays have adopted a pelagic or bentho-pelagic lifestyle and utilize oscillatory swimming-the Myliobatidae and Gymnuridae. The myliobatids have evolved cephalic lobes, anteriorly extended appendages that are optimized for feeding, while their pectoral fins exhibit several modifications that likely arose in association with functional optimization of pelagic cruising via oscillatory flight. Here, we examine variation in fin ray distribution and ontogenetic timing of fin ray development in batoid pectoral fins in an evolutionary context using the following methods: radiography, computed tomography, dissections, and cleared and stained specimens. We propose an index for characterizing variation in the distribution of pectoral fin rays. While undulatory swimmers exhibit symmetry or slight anterior bias, we found a posterior shift in the distribution of fin rays that arose in two distinct lineages in association with oscillatory swimming. Undulatory and oscillatory swimmers occupy nonoverlapping morphospace with respect to fin ray distribution illustrating significant remodeling of pectoral fins in oscillatory swimmers. Further, we describe a derived skeletal feature in anterior pectoral fins of the Myliobatidae that is likely associated with optimization of oscillatory swimming. By examining the distribution of fin rays with clearly defined articulation points, we were able to infer evolutionary trends and body plan remodeling associated with invasion of the pelagic environment. Finally, we found that the number and distribution of fin rays is set early in development in the little skate, round stingray, and cownose ray, suggesting that fin ray counts from specimens after birth or hatching are representative of adults and therefore comparable among species.