2016
DOI: 10.1088/0031-8949/91/10/105601
|View full text |Cite
|
Sign up to set email alerts
|

Hydrodynamic theory of partially degenerate electron–hole fluids in semiconductors

Abstract: This version is available at https://strathprints.strath.ac.uk/57252/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any pro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 26 publications
(12 citation statements)
references
References 49 publications
0
12
0
Order By: Relevance
“…Also, γ e = m e /m * e , γ h = m e /m * h and E g = µ h − µ e [80] is the normalized (to E p ) gap energy of semiconductor [80]. The characteristic eigenenergy equation in this case follows…”
Section: Plasmon Dispersion In Pair Plasmasmentioning
confidence: 99%
“…Also, γ e = m e /m * e , γ h = m e /m * h and E g = µ h − µ e [80] is the normalized (to E p ) gap energy of semiconductor [80]. The characteristic eigenenergy equation in this case follows…”
Section: Plasmon Dispersion In Pair Plasmasmentioning
confidence: 99%
“…with Λ being the electron de Broglie thermal wavelength. The EoS of isothermal free electron gas with arbitrary degeneracy is then written as [46] P (µ, T ) = n(µ, T ) β…”
Section: Equation Of State Of the Free Electron Gasmentioning
confidence: 99%
“…with Λ being the electron thermal de Broglie wavelength. Therefore, the equation of state of an isothermal free electron gas with arbitrary degeneracy may be written as [56] P (µ 0 , T ) = n(µ 0 , T ) β…”
Section: Physical Modelmentioning
confidence: 99%