The spill pressure of the contaminant source is an important factor affecting the amount, location, form, and behavior of the dense non-aqueous phase liquids (DNAPLs) that plume in a contaminated subsurface environment. In this study, perchloroethylene (PCE) infiltration, distribution and, remediation via a surfactant-enhanced aquifer remediation (SEAR) technique for a PCE spill event are simulated to evaluate the effects of the spill pressure of the contaminant source on the DNAPLs’ behavior in two-dimensional homogeneous and heterogeneous aquifers. Five scenarios with different spill pressures of contamination sources are considered to perform the simulations. The results indicate that the spill pressure of the contaminant source has an obvious influence on the distribution of DNAPLs and the associated efficiency of remediation in homogeneous and heterogeneous aquifers. As the spill pressure increases, more and more contaminants come into the aquifer and the spread range of contamination becomes wider and wider. Simultaneously, the remediation efficiency of contamination also decreases from 93.49% to 65.90% as the spill pressure increases from 33.0 kPa to 41.0 kPa for a heterogeneous aquifer with 200 realizations. The simulation results in both homogeneous and heterogeneous aquifers show the same influence of the spill pressure of the contaminant source on PCE behaviors in the two-dimensional model. This study indicates that the consideration of the spill pressure of the contaminant sources (such as underground petrol tanks, underground oil storage, underground pipeline, and landfill leakage) is essential for the disposal of contaminant leakage in the subsurface environment. Otherwise, it is impossible to accurately predict the migration and distribution of DNAPLs and determine the efficient scheme for the removal of contaminant spills in groundwater systems.