Many of the most abundant aquatic invertebrates display metachronal swimming by sequentially beating closely spaced flexible appendages. Common biophysical mechanisms like appendage spatial asymmetry and phase drive the success and performance of this locomotor mode, which is generally explained by the need to maximize thrust production. However, the potential role of these mechanisms in drag reduction, another important contributor to the overall swimming performance, has yet to be evaluated. We present a comprehensive overview of the morphological, functional, and physical mechanisms promoting drag reduction during metachronal swimming by exploring appendage differential bending and leg grouping (coalescence). We performed μ-CT and in-vivo velocimetry measurements of shrimp (Palaemonetes vulgaris) to design a five-legged robotic metachronal analog. This test platform enabled simultaneous flow and force measurements to quantify the thrust and drag forces produced by flexible and stiff pleopods (legs) beating independently or coalescing. We tested the hypothesis that coalescence and bending effectively reduce drag during the recovery stroke (RS). The curved cross-section of the pleopods enables passive asymmetrical bending during the RS to reduce their coefficient of drag by up to 75.8% relative to stiff pleopods. Bending promotes physical interactions facilitating the coalescence of three pleopods at any time during the RS to reduce drag such that the mean net thrust produced during coalescence is increased by 30.2%. These improvements are explained by the production of a weaker wake compared with stiff and non-coalescing pleopods. Our results describe fundamental biological and physical components of metachronal propulsion that may aid the development of novel bio-inspired underwater vehicles.