The conversion of syngas to hydrocarbons via Fischer−Tropsch synthesis (FTS) and to alcohols via higher alcohols synthesis (HAS) are two important chemical reactions that generate liquid fuels. Heterogeneous catalysts supported on carbon have been used in both of these fields. In this review, we first describe the features and surface properties of several shaped carbon materials, including carbon black, activated carbon, carbon nanotubes, carbon nanofibers, carbon spheres, ordered mesoporous carbon, graphene, and diamond. In particular, the microscopic structures of these shaped carbons are compared to differentiate the specific characteristics of different shaped carbons. Then we review the recent advances in the study of heterogeneous catalysts supported on these shaped carbon materials used for FTS and HAS from syngas in the past two decades. Various catalyst parameters, such as promoters, stability, autoreduction, pore structure, carbon morphology, and metal particle size, etc., are discussed and summarized.