Hydrogels are currently widely used in regenerative medicine and wound repair due to their superior biocompatibility, reliable mechanical strength, and good morphological memory. We aimed to prepare a self-expanding hydrogel that can be used as a skin expander for the repair of large soft skin tissue defects. Self-expanding hydrogels were prepared by chemical cross-linking, which consisted of water-soluble chitosan (CS), acrylamide (AM), methylene bisacrylamide (NMBA), etc. Five groups of in vitro experiments, including (CS-AM) of 0% (pure AM group), 13.9%, 27.8%, 41.7%, and 55.6%, were conducted to determine mechanical properties, swelling properties, cytotoxicity, etc. In the rat model, both a tight skin area (neck) and a loose skin area (back) were selected for expansion with hydrogels. A total of 27.8% of the CS-AM samples expanded stably under the skin of the rats, achieving 370% expansion in the tight zone and 490% expansion in the flaccid zone. Subcutaneous histopathological examination suggested that the inflammation index of the pericolloid tissue was lower in the CS-AM group than in the pure AM group. Our results demonstrate that self-expanding CS-AM hydrogels have great potential for application as skin expanders.
Graphical Abstract