The development of new materials that mimic cartilage and its function is an unmet need that will allow replacing the damaged parts of the joints, instead of the whole joint. Polyvinyl alcohol (PVA) hydrogels have raised special interest for this application due to their biocompatibility, high swelling capacity and chemical stability. In this work, the effect of post-processing treatments (annealing, high hydrostatic pressure (HHP) and gamma-radiation) on the performance of PVA gels obtained by cast-drying was investigated and, their ability to be used as delivery vehicles of the anti-inflammatories diclofenac or ketorolac was evaluated. HHP damaged the hydrogels, breaking some bonds in the polymeric matrix, and therefore led to poor mechanical and tribological properties. The remaining treatments, in general, improved the performance of the materials, increasing their crystallinity. Annealing at 150 °C generated the best mechanical and tribological results: higher resistance to compressive and tensile loads, lower friction coefficients and ability to support higher loads in sliding movement. This material was loaded with the anti-inflammatories, both without and with vitamin E (Vit.E) or Vit.E + cetalkonium chloride (CKC). Vit.E + CKC helped to control the release of the drugs which occurred in 24 h. The material did not induce irritability or cytotoxicity and, therefore, shows high potential to be used in cartilage replacement with a therapeutic effect in the immediate postoperative period.