In this study, the optimization of heat transfer in a metal hydride hydrogen tank to maximize hydrogen storage was investigated. A finite element model of a quarter tank was developed in COMSOL Multiphysics with parameterized geometry. The main objectives were to maximize stored hydrogen mass and minimize tank filling time while maintaining temperature uniformity within the tank. A design of experiments (DOE) approach was used with key geometrical parameters. Compared to the base case, the hydrogen stored mass increased from 0.26 to 0.46 kg, and the tank filling time reduced from over 1100 to 450 s. The optimal design (Design point 15) resulted in an absorbed hydrogen mass of 0.4624 kg, with a charging time of 450 s, showing the most balanced performance in terms of maximizing storage while minimizing filling time and better heat dissipation. This demonstrates the potential of optimizing heat transfer to significantly improve metal hydride hydrogen storage performance. The model can be further improved by exploring different cooling designs and materials.