The liquefaction of hydrogen is considered to be a crucial process in the large-scale utilization of hydrogen energy. In hydrogen liquefaction, hydrogen turbo-expander is a key refrigerating machine for high liquefaction efficiency. Performance of the turbo-expander is directly affected by the hydrogen gas bearings. To obtain a deep understanding of the performance characteristics of hydrogen gas bearings, the static and dynamic characteristics of herringbone grooved journal bearings under hydrogen and other lubricating gases were numerically calculated and compared. The bearing load capacity and critical mass of hydrogen gas bearings were slightly lower than those of helium-, air- and nitrogen-lubricated bearings. To improve the performance of the hydrogen gas bearings used in high-speed turbo-machinery, the influence of working conditions was analyzed. It is found that the load capacity of hydrogen gas bearings can be improved by increasing the ambient pressure, reducing the gas film clearance, and raising the bearing eccentricity ratio. Meanwhile, the critical mass increases, and the bearing dynamic stability is enhanced.