A series of polyether-or polyester-polyurethanes based on tetrahydrofuran-propylene oxide copolyether diol (PTMG/PPG) or poly(ethylene terephthalate) diol (PET), toluene diisocyanate (TDI), and three kinds of chain extenders including two calix[4]arene derivatives and 3,3 -dichloro-4,4 -diaminodiphenylmethane (MOCA) were synthesized in toluene. The thermal stability and mechanical properties of solvent-type polyurethanes were investigated. Incorporation of calixarenes into polyurethane backbones improved the thermal properties of the polyurethane as a result of the residual phenol hydroxy groups of the calix[4]arene units. Compared with polyurethane chain-extended by MOCA, the polyurethanes with calix[4]arene derivatives had higher elongation at break, lower elastic modulus, and lower yield strength, as a result of the larger steric cubage of calix[4]arene units and relatively large free volume of the polymer.