Through high-pressure Raman spectroscopy and x-ray diffraction experiments, we have investigated the formation, stability field, and structure of hydrogen iodide (HI). Hydrogen iodide is synthesized by the reaction of molecular hydrogen and iodine at room temperature and at a pressure of 0.2 GPa. Upon compression, HI solidifies into cubic phase I, and we present evidence for the emergence of a phase I above 3.8 GPa. Across the wide temperature regime presented here, HI is unstable under compression (11 GPa at 300 K, 18 GPa at 77 K), decomposing into its constituent elements, after which no further reaction between hydrogen and iodine was observed up to pressures of 60 GPa. This study provides both the constraints on the phase diagram of HI and its kinetic stability.