The subject of research is forty dimers formed by imidazol-2-ylidene (I) or its derivative (IR2) obtained by replacing the hydrogen atoms in both N-H bonds with larger important and popular substituents of increasing complexity (methyl = Me, iso-propyl = iPr, tert-butyl = tBu, phenyl = Ph, mesityl = Mes, 2,6-diisopropylphenyl = Dipp, 1-adamantyl = Ad) and fundamental proton donor (HD) molecules (HF, HCN, H2O, MeOH, NH3). While the main goal is to characterize the generally dominant C⋯H-D hydrogen bond engaging a carbene carbon atom, an equally important issue is the often omitted analysis of the role of accompanying secondary interactions. Despite the often completely different binding possibilities of the considered carbenes, and especially HD molecules, several general trends are found. Namely, for a given carbene, the dissociation energy values of the IR2⋯HD dimers increase in the following order: NH3< H2O < HCN ≤ MeOH ≪ HF. Importantly, it is found that, for a given HD molecule, IDipp2 forms the strongest dimers. This is attributed to the multiplicity of various interactions accompanying the dominant C⋯H-D hydrogen bond. It is shown that substitution of hydrogen atoms in both N-H bonds of the imidazol-2-ylidene molecule by the investigated groups leads to stronger dimers with HF, HCN, H2O or MeOH. The presented results should contribute to increasing the knowledge about the carbene chemistry and the role of intermolecular interactions, including secondary ones.