We argue, in contrast to recent studies, that the antiferromagnetic superexchange coupling between nearest neighbour spins does not fully destroy the ferromagnetism in dilute magnets with long-ranged ferromagnetic couplings. Above a critical coupling, we find a canted ferromagnetic phase with unsaturated moment. We have calculated the transition temperature using a simplified local Random Phase Approximation procedure which accounts for the canting. For the dilute magnetic semiconductors, such as GaMnAs, using ab-initio couplings allows us to predict the existence of a canted phase and provide an explanation to the apparent contradictions observed in experimental measurements. Finally, we have compared with previous studies that used RKKY couplings and reported non-ferromagnetic state when the superexchange is too strong. Even in this case the ferromagnetism should remain essentially stable in the form of a canted phase.