Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ba0.6Sr0.4TiO3 (BST) nanotubes are fabricated successfully by sol-sel method with the through-hole anodic aluminum oxide (AAO) template for the first time so far as we know. This fabrication method is easy to realize at low cost because the through-hole AAO template and the BST sol can be acquired easily at low cost, so this is very valuable in the fabrication of other similar nanostructures. First, the steady BST sol is prepared and the well aligned through-hole anodic aluminum oxide template is fabricated by a two-step anodization method; second, the BST sol is introduced into the ordered nanohole arrays of the through-hole AAO template by dipping and spinning; and finally, the samples are fired in air at 650℃ for 1 h to get BST nanotubes. X ray diffraction (XRD) patterns reveal that the BST nanotubes are of cubic perovskite structures, and grow mainly along [110] crystal orientation. Scanning electron microscope (SEM) results show that the thickness and pore size of the through-hole AAO template are about 16 μm and 75 nm, respectively. The length, external and inner diameters of the BST nanotubes are about 16 μm, 75 nm and 50 nm, respectively. Measurements of BST nanotubes give results highly matched with that of the through-hole AAO template. Fourier transform infrared spectroscopy (FTIR) results shows that in the 1350-1650 cm-1 waveband, the composite structure of AAO/BST nanotubes has two obvious absorption peaks which are respectively at 1470 and 1550 cm-1, while the BST film does not have; the absorption property of the composite structure is about two times of the pure through-hole AAO membrane. Finally, the possible reasons of this phenomenon about infrared absorption are discussed.
Ba0.6Sr0.4TiO3 (BST) nanotubes are fabricated successfully by sol-sel method with the through-hole anodic aluminum oxide (AAO) template for the first time so far as we know. This fabrication method is easy to realize at low cost because the through-hole AAO template and the BST sol can be acquired easily at low cost, so this is very valuable in the fabrication of other similar nanostructures. First, the steady BST sol is prepared and the well aligned through-hole anodic aluminum oxide template is fabricated by a two-step anodization method; second, the BST sol is introduced into the ordered nanohole arrays of the through-hole AAO template by dipping and spinning; and finally, the samples are fired in air at 650℃ for 1 h to get BST nanotubes. X ray diffraction (XRD) patterns reveal that the BST nanotubes are of cubic perovskite structures, and grow mainly along [110] crystal orientation. Scanning electron microscope (SEM) results show that the thickness and pore size of the through-hole AAO template are about 16 μm and 75 nm, respectively. The length, external and inner diameters of the BST nanotubes are about 16 μm, 75 nm and 50 nm, respectively. Measurements of BST nanotubes give results highly matched with that of the through-hole AAO template. Fourier transform infrared spectroscopy (FTIR) results shows that in the 1350-1650 cm-1 waveband, the composite structure of AAO/BST nanotubes has two obvious absorption peaks which are respectively at 1470 and 1550 cm-1, while the BST film does not have; the absorption property of the composite structure is about two times of the pure through-hole AAO membrane. Finally, the possible reasons of this phenomenon about infrared absorption are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.