We investigated the mechanisms that change the critical current density (Jc) of Nb/AlOx/Al/Nb Josephson junctions due to the inclusion of hydrogen in the Nb electrodes. Our investigations were performed according to three aspects: the superconductivity change, the change in thickness of the barrier layer, and the change in the barrier height due to the electronic effect. The results are as follows: (a) the hydrogen-inclusion-accompanied changes in the superconductivity parameters, such as the junction gap voltage, were much less than those of the critical current density, (b) the effect of hydrogen inclusion on Jc varied depending on the electrodes, i.e., the upper electrode above the barrier layer was the most affected, (c) the junctions with increased Ics due to hydrogen exclusion showed the identical amount of decrease in the junction resistance measured at room temperature, and (d) the hydrogen exclusion from the junction electrodes had no influence on the Nb/Al/AlOx/Al/Nb junctions, which had an extra Al layer. Based on these results we conclude that the Jc change is mainly caused by the change in junction resistance. A one order of magnitude smaller effect is caused by the superconductivity change. We believe the Jc change is caused by a Nb work function increase due to the hydrogen inclusion, resulting in an increase in barrier height.