Activity-dependent modulation of electrical transmission typically involves Ca2+ influx acting directly on gap junctions or initiating Ca2+-dependent pathways that in turn modulate coupling. We now describe short-term use-dependent facilitation of electrical transmission between bag cell neurons from the hermaphroditic snail, Aplysia californica, that is instead mediated by changes in postsynaptic responsiveness. Bag cell neurons secrete reproductive hormone during a synchronous afterdischarge of action potentials coordinated by electrical coupling. Here, recordings from pairs of coupled bag cell neurons in culture showed that non-junctional currents influence electrical transmission in a dynamic manner. Under dual whole-cell voltage-clamp, junctional current was linear and largely voltage-independent, while in current-clamp, the coupling coefficient was similar regardless of the extent of presynaptic hyperpolarization. Moreover, a train-stimulus of action potential-like waveforms, in a voltage-clamped presynaptic neuron, elicited electrotonic potentials, in a current-clamped postsynaptic neuron, that facilitated over time when delivered at a frequency approximating the afterdischarge. Junctional current remained constant over the train-stimulus, as did postsynaptic voltage-gated Ca2+ current. However, postsynaptic voltage-gated K+ current underwent cumulative inactivation, suggesting that K+ current run-down facilitates the electrotonic potential by boosting the response to successive junctional currents. Accordingly, preventing run-down by blocking postsynaptic K+ channels occluded facilitation. Finally, stimulation of bursts in coupled pairs resulted in synchronous firing, where active neurons could recruit silent partners through short-term use-dependent facilitation. Thus, potentiation of electrical transmission may promote synchrony in bag cell neurons and, by extension, reproductive function.