Electrochemical production of hydrogen peroxide (H 2 O 2 )t hrough two-electron (2 e À )o xygen reduction reaction (ORR) is an on-site and clean route.O xygen-doped carbon materials with high ORR activity and H 2 O 2 selectivity have been considered as the promising catalysts,h owever,t here is still alackofdirect experimental evidence to identify true active sites at the complex carbon surface.H erein, we propose ac hemicalt itration strategy to decipher the oxygen-doped carbon nanosheet (OCNS 900 )c atalyst for 2e À ORR. The OCNS 900 exhibits outstanding 2e À ORR performances with onset potential of 0.825 V( vs.R HE), mass activity of 14.5 Ag À1 at 0.75 V( vs.R HE) and H 2 O 2 production rate of 770 mmol g À1 h À1 in flow cell, surpassing most reported carbon catalysts.Through selective chemical titration of C = O, C À OH, and COOH groups,wefound that C = Ospecies contributed to the most electrocatalytic activity and were the most active sites for 2e À ORR, which were corroborated by theoretical calculations.