Growth factors initiate cytoskeletal rearrangements tightly coordinated with nuclear signaling events. We hypothesized that the angiogenic growth factor, vascular endothelial growth factor (VEGF), may utilize oxidants that are site-directed to a complex critical to both cytoskeletal and mitogenic signaling. We identified the WASP-family verprolin homologous protein-1 (WAVE1) as a binding partner for the NADPH oxidase adapter p47 phox within membrane ruffles of VEGF-stimulated cells. Within 15 min of VEGF stimulation, p47 phox coprecipitated with WAVE1, with the ruffle and oxidase agonist Rac1, and with the Rac1 effector PAK1. VEGF also increased p47 phox phosphorylation, oxidant production, and ruffle formation, all of which were dependent upon PAK1 kinase activity. The antioxidant Mn (III) tetrakis(4-benzoic acid) porphyrin and ectopic expression of either the p47-binding WAVE1 domain or the WAVE1-binding p47 phox domain decreased VEGF-induced ruffling, whereas the active mutant p4-(S303D, S304D,S328D) stimulated oxidant production and formation of circular dorsal ruffles. Both kinase-dead PAK1-(K298A) and Mn (III) tetrakis(4-benzoic acid) porphyrin decreased c-Jun N-terminal kinase (JNK) activation by VEGF, whereas dominant-negative JNK did not block ruffle formation, suggesting a bifurcation of mitogenic and cytoskeletal signaling events at or distal to the oxidase but proximal to JNK. Thus, WAVE1 may act as a scaffold to recruit the NADPH oxidase to a complex involved with both cytoskeletal regulation and downstream JNK activation.