Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective Vascular endothelial cells (ECs) sense and respond to both trauma factors (histone proteins) and sepsis signals (bacterial lipopolysaccharide, LPS) with elevations in calcium (Ca2+), but it is not clear if the patterns of activation are similar or different. We hypothesized that within seconds of exposure, histones but not LPS would produce a large EC Ca2+ response. We also hypothesized that histones would produce different spatio-temporal patterns of Ca2+ events in veins than in arteries. Methods We studied cultured ECs (Ea.Hy926) and native endothelial cells from surgically-opened murine blood vessels. High-speed live cell imaging of Ca2+ events were acquired for 5 minutes before and after stimulation of cultured ECs with histones or LPS alone or in combination. Histone-induced EC Ca2+ events were also compared in native endothelial cells from resistance-sized arteries and veins. Ca2+ activity was quantified as “Ca2+ prevalence” using custom spatiotemporal analysis. Additionally, cultured ECs were collected after 6 hours of exposure to histones or LPS for RNA sequencing. Results ECs – both in culture and in blood vessels – rapidly increased Ca2+ activity within seconds of histone exposure. In contrast, LPS exposure produced only a slight increase in Ca2+ activity in cultured ECs and no effect on blood vessels over 5-minute recording periods. Histones evoked large aberrant Ca2+ events (>30 seconds in duration) in both veins and arteries, but with different spatio-temporal patterns. Ca2+ activity in arterial ECs appeared as “rosettes”, with Ca2+ events that propagated from one cell to all adjacent surrounding cells. In veins, ECs responsed individually without spreading. Suprisingly, exposure of cultured ECs to LPS for 5-minutes before histones potentiated EC Ca2+ activity by an order of magnitude. Exposure of ECs to histones or LPS both increased gene expression, but different mRNAs were induced. Conclusions LPS and histones activate ECs through mechanisms that are distinct and additive; only histones produce large aberrant Ca2+ events. ECs in arteries and veins display different patterns of Ca2+ responses to histones.
Objective Vascular endothelial cells (ECs) sense and respond to both trauma factors (histone proteins) and sepsis signals (bacterial lipopolysaccharide, LPS) with elevations in calcium (Ca2+), but it is not clear if the patterns of activation are similar or different. We hypothesized that within seconds of exposure, histones but not LPS would produce a large EC Ca2+ response. We also hypothesized that histones would produce different spatio-temporal patterns of Ca2+ events in veins than in arteries. Methods We studied cultured ECs (Ea.Hy926) and native endothelial cells from surgically-opened murine blood vessels. High-speed live cell imaging of Ca2+ events were acquired for 5 minutes before and after stimulation of cultured ECs with histones or LPS alone or in combination. Histone-induced EC Ca2+ events were also compared in native endothelial cells from resistance-sized arteries and veins. Ca2+ activity was quantified as “Ca2+ prevalence” using custom spatiotemporal analysis. Additionally, cultured ECs were collected after 6 hours of exposure to histones or LPS for RNA sequencing. Results ECs – both in culture and in blood vessels – rapidly increased Ca2+ activity within seconds of histone exposure. In contrast, LPS exposure produced only a slight increase in Ca2+ activity in cultured ECs and no effect on blood vessels over 5-minute recording periods. Histones evoked large aberrant Ca2+ events (>30 seconds in duration) in both veins and arteries, but with different spatio-temporal patterns. Ca2+ activity in arterial ECs appeared as “rosettes”, with Ca2+ events that propagated from one cell to all adjacent surrounding cells. In veins, ECs responsed individually without spreading. Suprisingly, exposure of cultured ECs to LPS for 5-minutes before histones potentiated EC Ca2+ activity by an order of magnitude. Exposure of ECs to histones or LPS both increased gene expression, but different mRNAs were induced. Conclusions LPS and histones activate ECs through mechanisms that are distinct and additive; only histones produce large aberrant Ca2+ events. ECs in arteries and veins display different patterns of Ca2+ responses to histones.
Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β1 (TGF-β1), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC). An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca2+ signaling is involved in EndMT. In this study we tested the hypothesis that TGF-β1-induced EndMT in human LVEC is Ca2+-dependent. Treatment of LVEC with TGF-β1 for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1 and enhancement of store-operated Ca2+ entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca2+ with EGTA or BAPTA-AM respectively abolished EndMT in response to TGF-β1. Moreover, EGTA diminished TGF-β1-induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT, but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca2+ signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca2+ signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of pre-capillary pulmonary hypertension.
BACKGROUND: Store-operated calcium entry mediated by STIM (stromal interaction molecule)-1–Orai1 is essential in endothelial cell (EC) functions, affecting signaling, NFAT (nuclear factor for activated T cells)-induced transcription, and metabolic programs. While the small GTPase Rap1 isoforms, including the predominant Rap1B, are known for their role in cadherin-mediated adhesion, EC deletion of Rap1A after birth uniquely disrupts lung endothelial barrier function. Here, we elucidate the specific mechanisms by which Rap1A modulates lung vascular integrity and inflammation. METHODS: The role of EC Rap1A in lung inflammation and permeability was examined using in vitro and in vivo approaches. RESULTS: We explored Ca 2+ signaling in human ECs following siRNA-mediated knockdown of Rap1A or Rap1B. Rap1A knockdown, unlike Rap1B, significantly increased store-operated calcium entry in response to a GPCR (G-protein–coupled receptor) agonist, ATP (500 µmol/L), or thapsigargin (250 nmol/L). This enhancement was attenuated by Orai1 channel blockers 10 μmol/L BTP2, 10 μmol/L GSK-7975A, and 5 μmol/L Gd 3+ . Whole-cell patch clamp measurements revealed enhanced Ca 2+ release-activated Ca 2+ current density in siRap1A ECs. Rap1A depletion in ECs led to increased NFAT1 nuclear translocation and activity and elevated levels of proinflammatory cytokines (CXCL1, CXCL11, CCL5 [chemokine (C-C motif) ligand 5], and IL-6 [interleukin-6]). Notably, reducing Orai1 expression in siRap1A ECs normalized store-operated calcium entry, NFAT activity, and endothelial hyperpermeability in vitro. EC-specific Rap1A knockout (Rap1A iΔEC ) mice displayed an inflammatory lung phenotype with increased lung permeability and inflammation markers, along with higher Orai1 expression. Delivery of siRNA against Orai1 to lung endothelium using lipid nanoparticles effectively normalized Orai1 levels in lung ECs, consequently reducing hyperpermeability and inflammation in Rap1A iΔEC mice. CONCLUSIONS: Our findings uncover a novel role of Rap1A in regulating Orai1-mediated Ca 2+ entry and expression, crucial for NFAT-mediated transcription and endothelial inflammation. This study distinguishes the unique function of Rap1A from that of the predominant Rap1B isoform and highlights the importance of normalizing Orai1 expression in maintaining lung vascular integrity and modulating endothelial functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.