Some results concerning the hydrogen effect at electrolytic saturation at a current density of j = 1500 and 3500 A/m2 for 3 h at room temperature on the temperature dependence of the yield stress σ0.1(T) and the shape memory effect (SME) under tension of the [011]-oriented Ti-50.55%Ni (at.%) alloy single crystals are presented. It was shown that hydrogen is in a solid solution and forms particles of titanium hydride TiH2 after hydrogenation at j = 1500 and 3500 A/m2, respectively. Both hydrogen in the solid solution and TiH2 particles led to a decrease in the Ms temperature of the onset of the forward martensitic transformation (MT) upon cooling and the Md temperature (Md is the temperature at which the stresses for the onset of the stress-induced MT are equal to the stresses for the onset of plastic flow of the high-temperature B2 phase), and increased the yield stress σ0.1 of the B2 phase at the Md temperature compared to hydrogen-free crystals. It was found that the SME under stress depends on the tensile stress level and current density. The maximum SME εSME = 10 ± 0.2% at σex = 200 MPa and εSME = 10.5 ± 0.2% at σex = 300 MPa was observed in the hydrogen-free crystals and after hydrogenation at j = 1500 A/m2, respectively, which exceeded the theoretical value of lattice deformation ε0 = 8.95% for the B2-B19′ MT in [011] orientation under tension. At j = 1500 A/m2, the physical reason for the excess of the SME of the theoretical ε0 value was due to the increase in the plasticity of B19′ martensite upon hydrogenation. At j = 3500 A/m2, εSME = 8.0 ± 0.2%, and it was less than ε0 = 8.95% for B2-B19′ MT in [011] orientation under tension. The decrease in SME after hydrogenation at j = 3500 A/m2 was associated with the interaction of two types of B19′-martensite: oriented under stress and non-oriented, formed near TiH2 particles. It was shown that the redistribution of hydrogen in the bulk of the crystals during long-term holding for 168 h at 263 K after hydrogenation at j = 1500 A/m2 increases the SME relative to crystals without long-term holding: 3.5 times at 50 MPa and 1.8 times at 100–150 MPa. After long-term holding, εSME = 9.5 ± 0.2% at 150 MPa, which exceeds the theoretical value ε0 = 8.95% for B2-B19′ MT in [011] orientation under tension.