The accelerated evolution of communication
platforms including
Internet of Things (IoT) and the fifth generation (5G) wireless communication
network makes it possible to build intelligent gas sensor networks
for real-time monitoring chemical safety and personal health. However,
this application scenario requires a challenging combination of characteristics
of gas sensors including small formfactor, low cost, ultralow power
consumption, superior sensitivity, and high intelligence. Herein,
self-powered integrated nanostructured-gas-sensor (SINGOR) systems
and a wirelessly connected SINGOR network are demonstrated here. The
room-temperature operated SINGOR system can be self-driven by indoor
light with a Si solar cell, and it features ultrahigh sensitivity
to H2, formaldehyde, toluene, and acetone with the record
low limits of detection (LOD) of 10, 2, 1, and 1 ppb, respectively.
Each SINGOR consisting of an array of nanostructured sensors has the
capability of gas pattern recognition and classification. Furthermore,
multiple SINGOR systems are wirelessly connected as a sensor network,
which has successfully demonstrated flammable gas leakage detection
and alarm function. They can also achieve gas leakage localization
with satisfactory precision when deployed in one single room. These
successes promote the development of using nanostructured-gas-sensor
network for wide range applications including smart home/building
and future smart city.