Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
High entropy alloys (HEAs) are composed of multiple main metal elements and have attracted wide attention in various fields. In this study, a novel Ti0.20Zr0.20Hf0.20Nb0.40 HEA was synthesized and its hydrogenation properties were studied, including sorption thermodynamics and hydrogen absorption/desorption kinetics. The maximum hydrogen absorption capacity was 1.5 H/atom at 573 K. X-ray diffraction (XRD) analysis indicated that the crystal structure of Ti0.20Zr0.20Hf0.20Nb0.40 HEA transformed from body-centered cubic (BCC) to body-centered tetragonal (BCT) with increasing hydrogen content, and to face-centered cubic (FCC) after hydrogen absorption to saturation. As a multi-principal element alloy, the Ti0.20Zr0.20Hf0.20Nb0.40 HEA possesses unique hydrogen absorption characteristics. The hydrogen absorption platform pressure rises gradually with the increase of the hydrogen absorption amount, which is caused by multiple kinds of BCT intermediate hydrides with consecutively increasing c/a. The full hydrogen absorption of the Ti0.20Zr0.20Hf0.20Nb0.40 HEA was completed in almost 50 s, which is faster than that of the reported hydrogen storage alloys in the literature. The experimental results demonstrate that the Ti0.20Zr0.20Hf0.20Nb0.40 HEA has excellent kinetic properties, unique thermodynamic hydrogen absorption performance, as well as a low plateau pressure at room temperature.
High entropy alloys (HEAs) are composed of multiple main metal elements and have attracted wide attention in various fields. In this study, a novel Ti0.20Zr0.20Hf0.20Nb0.40 HEA was synthesized and its hydrogenation properties were studied, including sorption thermodynamics and hydrogen absorption/desorption kinetics. The maximum hydrogen absorption capacity was 1.5 H/atom at 573 K. X-ray diffraction (XRD) analysis indicated that the crystal structure of Ti0.20Zr0.20Hf0.20Nb0.40 HEA transformed from body-centered cubic (BCC) to body-centered tetragonal (BCT) with increasing hydrogen content, and to face-centered cubic (FCC) after hydrogen absorption to saturation. As a multi-principal element alloy, the Ti0.20Zr0.20Hf0.20Nb0.40 HEA possesses unique hydrogen absorption characteristics. The hydrogen absorption platform pressure rises gradually with the increase of the hydrogen absorption amount, which is caused by multiple kinds of BCT intermediate hydrides with consecutively increasing c/a. The full hydrogen absorption of the Ti0.20Zr0.20Hf0.20Nb0.40 HEA was completed in almost 50 s, which is faster than that of the reported hydrogen storage alloys in the literature. The experimental results demonstrate that the Ti0.20Zr0.20Hf0.20Nb0.40 HEA has excellent kinetic properties, unique thermodynamic hydrogen absorption performance, as well as a low plateau pressure at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.