Among several hydrogen storage methods for application in fuel cells, on-board hydrogen generation using sodium borohydride (NaBH4; a chemical hydride) for application in proton exchange membrane (PEM) fuel cells can be considered as a low-weight method for portable applications. In this paper, an integrated continuous-flow system for on-demand hydrogen generation from the hydrolysis reaction of the NaBH4 solution in the presence of a low-cost catalyst is proposed. By using the prepared non-noble Co(NO3)2 on porous alpha-alumina support, as catalyst, the cost of the catalyst has cut down considerably. Up to 15 SLPM high-purity hydrogen gas is expected to be generated by this system to supply to a 1 kW-scale proton exchange membrane (PEM) fuel cell stack (H2-air, 40% efficiency).