Nitrate is among the most widely occurring contaminants in groundwater on a global scale, posing a serious threat to drinking water supplies. With the advancement of urbanization and mountainous agriculture, the nitrate in the groundwater of Wanzhou District in the Three Gorges Reservoir Area has formed a complex combination of pollution sources. To more accurately identify the sources of nitrate in groundwater, this study integrates hydrochemical methods and environmental isotope techniques to analyze the sources and transformation processes in shallow groundwater nitrate under different land-use types. Furthermore, the Bayesian isotope mixing model (MixSAIR) is employed to calculate the contribution rates in various nitrate sources. The results indicate that nitrate is the primary form of inorganic nitrogen in shallow groundwater within the study area, with nitrate concentrations in cultivated groundwater generally higher than those in construction land and forest land. The transformation process of nitrate is predominantly nitrification, with little to no denitrification observed. In cultivated shallow groundwater, nitrate mainly originates from chemical fertilizers (36.3%), sewage and manure (35.4%), and soil organic nitrogen (24.7%); in forested areas, nitrate primarily comes from atmospheric precipitation (35.3%), chemical fertilizers (31.3%), and soil organic nitrogen (22.1%); while in constructed areas, nitrate mainly derives from chemical fertilizers (46.0%) and sewage and manure (32.2%). These results establish a scientific foundation for formulating groundwater pollution control and management strategies in the region and serve as a reference for identifying nitrate sources in groundwater in regions with comparable hydrogeological features and pollution profiles.