Riverbank Filtration (RBF) Technology has been found to be a safe, renewable, sustainable, and cost-effective drinking water treatment or pretreatment technology. The Egyptian government has recently turned to riverbank filtration to conserve drinking and industrial water at a lower cost and higher efficiency. The study aims to assess the hydraulic performance of the riverbank filtration system in west Sohag, Egypt. MODFLOW and MODPATH 10.2.3 were used under the platform of Groundwater Modeling System (GMS) to construct a hydraulic groundwater flow model to simulate the flow of the riverbank filtration system. Six pumping rates with two scenarios were conducted to investigate the system's hydraulic performance. Water samples were collected from the Nile River, abstraction wells, and groundwater to characterize the water quality. The results indicated that the application of riverbank filtration is promising due to the significant hydraulic connection between the Nile and the aquifer. However, the system hydraulic aspects should be taken into consideration during the design phase as they may affect the RBF hydraulic performance and its efficiency. It became apparent how effective RBF is at eliminating pathogens and suspended solids. Infiltrated water, on the other hand, has higher iron and manganese amounts than the Nile water.