2021
DOI: 10.1504/ijhst.2021.117540
|View full text |Cite
|
Sign up to set email alerts
|

Hydrological models: a review

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 27 publications
(10 citation statements)
references
References 0 publications
0
9
0
1
Order By: Relevance
“…Most previous studies in semi-arid and ungauged closed watersheds used remotesensing data and water-balance models to analyze monthly and annual lake variations [25][26][27][28][29][30]. This study provides a valuable supplement to these previous studies and can address the gaps in simulating detailed hydrologic processes related to lakes.…”
Section: Comparison With Previous Studiesmentioning
confidence: 97%
See 1 more Smart Citation
“…Most previous studies in semi-arid and ungauged closed watersheds used remotesensing data and water-balance models to analyze monthly and annual lake variations [25][26][27][28][29][30]. This study provides a valuable supplement to these previous studies and can address the gaps in simulating detailed hydrologic processes related to lakes.…”
Section: Comparison With Previous Studiesmentioning
confidence: 97%
“…Integrating remote-sensing data with hydrologic modeling is an effective method to simulate and predict continuous hydrologic processes under various climate conditions [25][26][27]. Compared with remote-sensing data alone, the combined method can depict the internal hydrologic processes between climate and lakes (e.g., surface runoff, groundwater flow, and snowmelt), and quantify the impacts of these processes on lake variations [28][29][30].…”
Section: Introductionmentioning
confidence: 99%
“…Knoben et al (2020) evaluate the performance of 36 daily lumped parameter models over 559 catchments and show that between 1 and up to 28 models can show performance close to the model structure with the highest performance criteria. Such results are widely covered in catchment hydrology (Zhou et al, 2021;Pandi et al, 2021;Dakhlaoui and Djebbi, 2021;Darbandsari and Coulibaly, 2020;Gupta and Govindaraju, 2019) but still poorly investigated in karst hydrology. Indeed, the structural uncertainty impacts on rainfall-discharge modeling in karst hydrology is not properly evaluated whereas many studies consider several hydrological model structure to include structural uncertainty in flow simulation (Hartmann et al, 2012;Jiang et al, 2007;Jones et al, 2006;Sivelle et al, 2021).…”
Section: Model Evaluationmentioning
confidence: 97%
“…La hidrología tiene varias aplicaciones prácticas, principalmente para la gestión de desastres naturales por inundación, deslizamiento de tierra, planificación del suministro de agua, diseño y funcionamiento de estructuras hidráulicas, reducción de la contaminación, manejo de aguas residuales, riego, control de erosión, sedimentos, entre otros (Shaw et al, 2010;Khalid et al, 2016;Abdulkareem et al, 2018;Pandi et al, 2021). Por lo tanto, la ciencia de la hidrología proporciona los lineamientos para la planificación, gestión y control de los recursos hídricos mediante la aplicación de principios de ingeniería (Abdulkareem et al, 2018).…”
Section: Abstract: Hydrological Model Selection Runoff Modeling Proto...unclassified