For more information on the USGS-the Federal source for science about the earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS
For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprodTo order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
Suggested citation:McBride, W.S., Bellino, J.C., and Swancar, Amy, 2011, Hydrology, water budget, and water chemistry of Lake Panasoffkee, west- Elevation, as used in this report, refers to distance above the vertical datum.Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).
AbstractA study of Lake Panasoffkee and the surrounding watershed was conducted between October 2005 and September 2009 to gain a better understanding of how this large lake fits within the regional hydrogeologic setting of west-central Florida. Lake Panasoffkee is part of the headwaters of the Withlacoochee River and has a major influence on the hydrology and ecology of that basin. The study defined the interaction between surface water and groundwater, and the magnitude of lake evaporation and groundwater inflow to the lake and how these relate to the Lake Panasoffkee water budget. Geochemical and isotopic analyses were used with water-budget results to describe water sources for the lake. Lake Panasoffkee, the underlying surficial aquifer, and the Floridan aquifer system are hydraulically connected. An area of focused groundwater-discharge potential, where groundwater levels are higher than surface-water levels, is present beneath Lake Panasoffkee and extends several miles northwest and southeast of the lake. Although the size and intensity of the discharge area varied with the seasons and with hydrologic conditions, discharging conditions remained constant throughout the study period.The sandy uplands farther northeast and southeast of Lake Panasoffkee showed the greatest potential for surfacewater to groundwater recharge within the study area. The Lake Panasoffkee watershed lacks a well-developed surface-water drainage system because rainfall rapidly infiltrates the sandy soils in the uplands and recharges the surficial aquifer. The intermediate confining unit is discontinuous in the study area, but even in areas where the confining unit is present, there is a well-developed internal drainage system that compromises the integrity of the unit. The internal drainage system consists of an interconnected network of karst features that includes sinkholes, fissures, and conduits. The discontinuous intermediate confining unit and internal drainage features allow the surficial aquifer to rapidly ...