Five isomorphous d(0) transition metal oxofluoride compounds A(3)[M(2)O(x)F(11-x)]·(AF)(0.333) (A = K, Rb, NH(4); M = Nb, Mo, W; x = 2, 4) have been synthesized from acid fluoride solutions, and their crystal structures have been determined by single-crystal X-ray diffraction. The basic structural building units are dinuclear M(2)X(11) (dimers) formed from NbOF(5) or Mo(W)O(2)F(4) octahedra connected by the fluorine bridging atom. In the Nb(2)O(2)F(9) dimer, the O atoms occupy apical corners. In the M(2)O(4)F(7) (M = Mo, W) dimers two O atoms are also apically placed, whereas the other two O atoms are statistically disordered in equatorial planes. The arrangement of dimers is so that the hexagonal tunnels containing `free' fluoride ions are formed. During the irradiation process the orthorhombic structure of K(3)Nb(2)O(2)F(9)·(KF)(0.333) transforms into a pseudo-trigonal one with a = 23.15 Å, which is the [101] diagonal of the orthorhombic unit cell. The other four trigonal crystals are merohedral twins.