Glycogen, a hyperbranched complex glucose polymer, is an intracellular glucose store that provides energy for cellular functions, with liver glycogen involved in blood-glucose regulation. Liver glycogen comprises complex α particles made up of smaller β particles. The recent discovery that these α particles are smaller and fewer in diabetic, compared with healthy, mice highlights the need to elucidate the nature of α-particle formation; this paper tests various possibilities for binding within α particles. Acid hydrolysis effects, examined using dynamic light scattering and size exclusion chromatography, showed that the binding is not simple α-(1→4) or α-(1→6) glycosidic linkages. There was no significant change in α particle size after the addition of various reagents, which disrupt disulfide, protein, and hydrogen bonds and hydrophobic interactions. The results are consistent with proteinaceous binding between β particles in α particles, with the inability of protease to break apart particles being attributed to steric hindrance.