Cationic amorphous metal-organic cage (MOC)-based materials capable of removing anionic pollutants from water are receiving increasing attention but they are still relatively less reported. Herein, for the first time, a cationic porous MOC-based extended framework, namely, CL-aMOC-1, was constructed by covalent linking of a cationic Pd 12 L 24 (L = 3,5-di-pyridin-4-ylbenzaldehyde) cage with a 1,4-bis(4-aminophenyl)benzene (BAPB) linker. Interestingly, the reaction could be completed within 15 min using an amorphous MOC-based solid (aMOC-1) and BAPB as reactant via a low-temperature solid-state reaction. The CL-aMOC-1 showed improved stability, lower solubility and higher oxo-anion uptake in water compared with the original aMOC-1. The adsorption capacities for CrO 4 2À , Cr 2 O 7 2À and ReO 4 Àon CL-aMOC-1 were 245.1, 311.5 and 452.5 mg/g, respectively, in which the uptake of Cr(VI)-containing oxoanions was among the highest compared with those of other metal-organic materials. The CL-aMOC-1 can selectively capture oxo-anions in the presence of competitive anions. It exhibits good reusability as over 85 % of the uptake capacity is retained after 5 cycles. Finally, it shows the ability to remove Cr(VI) ions from electroplating wastewater.