Viscoelastic Walters' B fluid flows for three problems, stagnation-point flow, Blasius flow, and Sakiadis flow, have been investigated. In each problem, Cauchy equations are changed to a nondimensional differential equations using stream functions and with assumption of boundary layer flow. The fourth-order predictor-corrector finite-difference method for solving these nonlinear differential equations has been employed. The results that have been obtained using this method are compared with the results of the last studies, and it is clarified that this method is more accurate. It is also shown that the results of last study about Sakiadis flow of Walter's B fluid are not true. In addition, the effects of order of discretization in the boundaries are investigated. Moreover, it has been discussed about the valid region of Weissenberg numbers for the second-order approximation of viscoelastic fluids in each case of study.