This study addresses the inherent issues surrounding surface modification methods of nanofibers and proposes an environmentally friendly and less toxic strategy for the surface modification of hydrophilic nanofiber. From the continuation of our previous work, which discussed the easy production of nanofiber (average size: 127 nm) from oil palm mesocarp fiber (OPMF), in this work, the surface of nanofibers (M‐IL‐OPMF) were modified through vapor‐phase‐assisted surface polymerization (VASP) to improve the affinity of interface between the polymer grafted M‐IL‐OPMF and non‐polar matrix. VASP of ε‐caprolactone was successfully proceeded from the [M‐IL‐OPMF] at 70 °C for 24 h and 72 h, and compositions were estimated to be 35.7% fiber/64.3% polymer and 27.8% fiber/72.2% polymer. To confirm the grafting of PCL, size‐exclusion chromatography (SEC) and Fourier transform infrared (FT‐IR) spectroscopy, thermogravimetry (TG), and dispersibility test in hydrophobic solvent were carried out. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2575–2580