The coating of surfaces carrying fluid with hydrophobic materials has shown effective results in reducing friction factors. In this study, the optimization of manufacturing parameters, including the additive ratio, curing temperature, and curing time was conducted to enhance the hydrophobic behavior of fluorinated ethylene propylene (FEP) material by incorporating nano graphene additives. Three different levels for the optimized parameters were determined based on the literature sources. These levels were set as 1% wt, 2% wt, and 3% wt for graphene additive ratios, 200 ˚C, 300 ˚C, and 400 ˚C for curing temperatures, and 30 min, 40 min, and 50 min for curing times. Following the L9 Taguchi design, the FEP/graphene mixture was applied to AISI 304 stainless steel surfaces, and the curing process was completed in an oven. The optimization process was performed based on the response of water droplet contact angles on the surfaces. The optimum graphene additive ratio was determined as 1%, the optimum curing temperature was 400 ˚C, and the optimum curing time was found to be 40 min. Variance analysis revealed that the curing temperature had the most significant effect on the contact angles with a contribution rate of 96.78%. Applying the optimal manufacturing parameters to the FEP coating material with added additives can contribute to energy savings in applications such as pumps, turbines, and pipelines.