This review covers the advance in the development of Fe, Co, and Ni catalysts for the alkene hydrosilylation reaction, as well as the related dehydrogenative silylation reaction. The hydrosilylation of alkene is an important reaction for the synthesis of alkylsilanes that has widespread applications in numerous siliconbased materials, and for decades, this transformation has been relying on the use of Pt catalysts. Recently, the high abundance and low cost, coupled with the environmentally benign nature of the base metals have stimulated enormous research on the development of first-row transition-metal catalysts as replacements for the precious Pt catalysts. Several base-metal catalysts which have emerged during the past 5 years offer high activity, broad substrate scope, and excellent regioselectivity. Both of the anti-Markovnikov and the unusual Markovnikov additions can be achieved in a high degree of regioselectivity. The reactions of acyclic internal olefins catalyzed by the base-metal catalysts reported to date yield linear alkylsilanes via a tandem olefin-isomerization and hydrosilylation process. A few catalysts enable the dehydrogenative silylation of alkenes to form vinylsilanes and/or allylsilanes.