CRANE
COUNTY
Belding Fort Stockton
Pecos R iv e rObliqueFor more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprodTo order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD83).Altitude, as used in this report, refers to distance above the vertical datum.
Simulation of Groundwater Flow in the Edwards-Trinity and Related Aquifers in the Pecos County Region, TexasBy Brian R. Clark, Johnathan R. Bumgarner, Natalie A. Houston, and Adam L. Foster
AbstractThe Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. The U.S. Geological Survey completed a comprehensive, integrated analysis of available hydrogeologic data to develop a numerical groundwater-flow model of the Edwards-Trinity and related aquifers in the study area in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The active model area covers about 3,400 square miles of the Pecos County region of Texas west of the Pecos River, and its boundaries were defined to include the saturated areas of the Edwards-Trinity aquifer. (2008) pumping rates as assigned in scenario 1 with year-round maximum permitted pumping rates in the Belding area. Results of scenario 2 are similar in waterlevel decline and extent as those of scenario 1. The extent of the projected groundwater-level decline in the range from 5.0 to 15.0 feet in the Leon-Belding irrigation area expanded slightly (about a 2-percent increase) from that of scenario 1. Maximum projected groundwater-level declines in the Leon-Belding irrigation area were approximately 31.3 feet in small isolated areas. Scenario 3 evaluated the effects of periodic increases in pumping rates over the 30-year extended period. Results of scenario 3 are similar to those of scenario 2 in terms of the areas of groundwater-level decline; however, the maximum projected groundwater-level decline increased to approximately 34.5 feet in the Leon-Belding area, and the extent of the decline was larger in area (about a 17-percent increase) than that of scenario 2. Additionally, the area of projected groundwater-level declines in the eastern part of the model area increased from that of scenario 2-two individual areas of decline coalesced into one larger area. The localized nature of the projected groundwater-level de...